y[k] - 1.9*y[k-1] + 0.95*y[k-2] = 0.5*x[k] + 0.3*x[k-1] + 0.2*x[k-2]
+ 0.4*x[k-3]
Standard Information
- Vairables:
- x[k] the input at time k
- y[k] the output at time k
- Difference Equation
y[k] - 1.9*y[k-1] + 0.95*y[k-2] = 0.5*x[k] + 0.3*x[k-1]
+ 0.2*x[k-2] + 0.4*x[k-3]
First Homework
- MATLAB file: hw1_m
- example input: graph
- simulated output: graph
- Ouput with Noise
- Noise Amplitude: 10% of the maximum
value of the output
- Noise Characteristic: uniform random noise
- simulated output + noise: graph
- ARX Method Result
- Ideal input:
y[k] - 1.9*y[k-1] + 0.95*y[k-2] = 0.5*x[k] + 0.3*x[k-1]
+ 0.2*x[k-2] + 0.4*x[k-3]
- Ideal input + Noise:
y[k] - 0.5464*y[k-1] - 0.2331*y[k-2] = 13.014*x[k]
- 12.070*x[k-1] + 4.6441*x[k-2] + 1.3194*x[k-3]
- RARX Method Result
- Ideal input:
y[k] - 1.9*y[k-1] + 0.95*y[k-2] = 0.5*x[k] + 0.3*x[k-1]
+ 0.2*x[k-2] + 0.4*x[k-3]
- Ideal input + Noise:
y[k] - 0.4163*y[k-1] - 0.2559*y[k-2] = 6.4457*x[k]
- 5.4819*x[k-1] + 9.3809*x[k-2] - 3.0173*x[k-3]
- Comparision of the Quality of Parameters (2 Feb. 1996)
- MATLAB file: hw1_e.m
- Simulated output, graph, from
ideal input with
- the original parameter (yellow)
- the parameter from ARX method when there is noise (red)
- the parameter from RARX method when there is noise (green)